HOTMAIL BLOQUEADO?

Verdade!

RASPBERRY PI

RASPBERRY PI
Inovação para o conhecimento

Esquema raspberry-pi

Aprenda programar em python

Aprenda programar em python
Útil para raspberry-pi

Raspberry Pi GPU / CPU pinagem

QR CODE= link do blog.

QR CODE= link do blog.

Doação sem cadastro no pagseguro pode inserir telefone inválido .O boleto é gerado na hora.

BIOS 3D GIGABYTE

BIOS 3D GIGABYTE
Fim da tela azul da bios tempo da pedra

QUAL O DEFEITO?

QUAL O DEFEITO?
Visite este blog antes de levar seu equipamento na oficina de reparação.

Manutenção placa mae + de 250.000 Acessos

.

Capacitores usados em placas mae.

RISCO DE CHOQUE ELÉTRICO

RISCO DE CHOQUE  ELÉTRICO
NÃO ABRA EQUIPAMENTOS ELETRICOS OU TENTE FAZER REPARAÇÕES SEM CONHECIMENTOS TÉCNICOS

INFORMAÇÃO CAPACITOR REQUERIDO

5 esquemas Gateway

APOSTILA DE DESSOLDAGEM SMD---Download

TESTE PARA FONTE ATX--CLICK IMAGEM ABAIXO

ADAPTADOR ATA/ SATA?....VER AQUÍ.

Faça seu próprio fluxo de solda

ATX 230 SUNNY

LINHA DE MONTAGEM DE PLACAS (VÍDEO)

Aquela fonte ATX sem conector sata?

Aquela fonte ATX sem conector sata?
Clique na imagem.

100.000 drivers

Manutenção de fonte ATX

O transformador de pulso 16pt8515-4

Saiba o que é cooler usando elemento Peltier

Saiba o que é OEM

link,s de fabricantes

Códigos beep

Remoção e soldagem de BGA

Palavra em promoção

Pg

28/07/09

DUVIDAS SOBRE FONTES ATX

DUVIDAS SOBRE FONTES ATX

Tenho uma placa-mãe ASUS P4V800D-X que usa um conector de alimentação de 24 pinos. Minha fonte é de 20 pinos. Como faço para ligar minha fonte na minha placa-mãe? Fontes com conector de 20 pinos podem ser encaixadas em placas-mãe com conector de 24 pinos sem a necessidade de um adaptador. Quatro pinos do conector da placa-mãe ficam sobrando (com o encaixe do plugue voltado para baixo, são os quatro pinos mais à direita do conector que ficam sobrando). Apesar de esta conexão ser possível, seu micro pode não funcionar adequadamente, pois sua fonte pode não ser capaz de gerar corrente suficiente para a placa-mãe (sintomas típicos deste problema são o computador travando e reiniciando sozinho). Esta possibilidade de instalação pode ser conferida no manual da sua placa-mãe. Se no manual diz que a placa pode ser ligada a uma fonte de 20 pinos, então você não terá problemas. Normalmente somente placas-mãe mais simples permitem essa conexão sem que o PC apresente problemas. No caso específico da sua placa, no manual diz você não terá problemas se sua fonte for capaz de fornecer pelo menos 8 A na linha +12 V e 1 A na linha +5VSB. Caso não seja esse o seu caso você terá de trocar a sua fonte. Em três meses eu já consegui queimar seis fontes de alimentação. Técnicos me disseram ser problema de instalação elétrica, só que eu me mudei e duas eu queimei no Rio e o resto em SP. O que pode ser? Além conferir a instalação elétrica (você pode ter o azar de ter a instalação elétrica mal-feita nos dois locais) e instalação de um terra, recomendamos que você instale uma fonte de alimentação “de marca” (também conhecidas como “fontes com potência real”), tais como OCZ, Thermaltake, Seventeam, TTGI, Cooler Master, só para citarmos algumas. Realmente a maioria das fontes vendida no mercado é de qualidade muito baixa e muitos usuários tentam economizar comprando a fonte mais barata para depois ter muita dor-de-cabeça, como parece ser o seu caso.

Fonte ATX

TESTE DA FONTE:

SOMENTE LIGAR NA REDE ELETRICA DEPOIS DE FEITO ESTE PROCEDIMENTO:

FAZER LIGAÇÃO DO PINO VERDE COM O PRETO(QUALQUER FIO PRETO)

A FONTE TEM QUE ACIONAR COM ESTA LIGAÇÃO .


As fontes de alimentação são as responsáveis por distribuir energia elétrica a todos os componentes do computador. Por isso, uma fonte de qualidade é essencial para manter o bom funcionamento do equipamento. No intuito de facilitar a escolha de uma fonte, este artigo apresentará as principais características desse dispositivo, desde o padrão AT até o padrão ATX.

As fontes de alimentação

Essencialmente, as fontes de alimentação são equipamentos responsáveis por fornecer energia aos dispositivos do computador, convertendo corrente alternada (AC - Alternate Current) - grossamente falando, a energia recebida através de geradores, como uma hidroelétrica) - em corrente contínua (DC - Direct Current ou VDC - Voltage Direct Current), uma tensão apropriada para uso em aparelhos eletronicos

Nos computadores, usa-se um tipo de fonte conhecido como "Fonte Chaveada". Trata-se de um padrão que faz uso de capacitores e indutores no processo de conversão de energia. A desvantagem disso é que há menos geração de calor, já que um mecanismo da fonte simplesmente desativa o fluxo de energia ao invés de dissipar um possível excesso. Além disso, há menor consumo, pois a fonte consegue utilizar praticamente toda a energia que "entra" no dispositivo. Por se tratar de um equipamento que gera campo eletromagnético (já que é capaz de trabalhar com freqüências altas), as fontes chaveadas devem ser blindadas para evitar interferência em outros aparelhos e no próprio computador.

Tensões fornecidas pelas fontes

Os dispositivos que compõem o computador requerem níveis diferentes de tensão para seu funcionamento. Por isso, as fontes de alimentação fornecem, essencialmente, quatro tipos de tensão (em Volts - V):

5 V - utilizada na alimentação de chips, como processadores, chipsets e módulos de memória;

- 5 V - aplicada em dispositivos periféricos, como mouse e teclado;

12 V - usada em dispositivos que contenham motores, como HDs (cujo motor é responsável por girar os discos) e drives de CD ou DVD (que possui motores para abrir a gaveta e para girar o disco);

- 12 V - utilizada na alimentação de barramentos de comunicação, como o antigo ISA (Industry Standard Architecture).

Os valores descritos acima são usados no padrão de fonte conhecido como AT (Advanced Technology). No entanto, o padrão ATX (Advanced Technology Extended), quando lançado, apresentou mais uma tensão: a de 3,3 V, que passou a ser usada por chips (principalmente pelo processador), reduzindo o consumo de energia.

As fontes ATX também trouxeram um recurso que permite o desligamento do computador por software. Para isso, as fontes desse tipo contam com um sinal TTL (Transistor-Transistor Logic) chamado Power Supply On (PS_ON). Quando está ligada e em uso, a placa-mãe mantém o PS_ON em nível baixo, como se o estive deixando em um estado considerado "desligado". Se a placa-mãe estiver em desuso, ou seja, não estiver recebendo as tensões, deixa de gerar o nível baixo e o PS_ON fica em nível alto. Esse sinal pode mudar seu nível quando receber ordens de ativação ou desativação dos seguintes recursos:

Descriçao dos pinos

20 pinos

24 pinos

Soft On/Off - usado para ligar/desligar a fonte por software. É graças a esse recurso que o Windows ou o Linux consegue desligar o computador sem que o usuário tenha que apertar um botão do gabinete;

Wake-on-LAN - permite ligar ou desligar a fonte por placa de rede;

Wake-on-Modem - possibilitar ligar ou desligar a fonte por modem.

O sinal PS_ON depende da existência de outro: o sinal 5VSB ou Standby. Como o nome indica, esse sinal permite que determinados circuitos sejam alimentados quando as tensões em corrente contínua estão suspensas, mantendo ativa apenas a tensão de 5 V. Em outras palavras, esse recurso é o que permite ao computador entrar em modo de descanso. É por isso que a placa de vídeo ou o HD podem ser desativados e o computador permanecer ligado.

O sinal Power Good

O sinal Power Good é uma proteção para o computador. Sua função é comunicar à máquina que a fonte está apresentando funcionamento correto. Se o sinal Power Good não existir ou for interrompido, geralmente o computador desliga automaticamente. Isso ocorre porque a interrupção do sinal indica que o dispositivo está operando com voltagens alteradas e isso pode danificar permanentemente um componente do computador. O Power Good é capaz de impedir o funcionamento de chips enquanto não houver tensões aceitáveis.

O Power Good é um recurso existente já no padrão AT. No caso do padrão ATX, seu sinal recebe o nome de Power Good OK (PWR_OK) e sua existência indica a disponibilização das tensões de 5 V e de 3,3 V.

Potência das fontes de alimentação

Se um dia você já teve que comprar ou pesquisar o preço de uma fonte de alimentação para seu computador, certamente pode ter ficado em dúvida sobre qual potência escolher. No Brasil, é muito comum encontrar fontes de 300 W (watts), no entanto, dependendo de seu hardware, uma fonte mais potente pode ser necessária. Para saber quando isso é aplicável, deve-se saber quanto consome cada item de seu computador. A tabela abaixo mostra um valor estimado:

ITEM

CONSUMO

Processadores topo de linha (como Pentium 4 HT e Athlon 64)

60 W - 110 W

Processadores econômicos (como Celeron e Duron)

30 W - 80 W

Placa-mãe

20 W - 100 W

HDs e drives de CD e DVD

25 W - 35 W

Placa de vídeo sem instruções em 3D

15 W - 25 W

Placa de vídeo com instruções em 3D

35 W - 110 W

Módulos de memória

2W - 10 W

Placas de expansão (placa de rede, placa de som, etc)

5 W - 10 W

Cooler

5 W - 10 W

Teclado e mouse

1 W - 15 W

Obviamente esses valores podem variar, pois não são precisos. Além disso, o consumo de energia de determinados dispositivos pode depender do modelo e do fabricante. O importante é que você analise a quantidade de itens existentes em seu computador e adquira uma fonte que possa atender a essa configuração de maneira estável. Por exemplo, se você tiver uma máquina com processador Athlon 64 FX, com dois HDs, um drive de CD/DVD, placa de vídeo 3D, mouse óptico, entre outros, uma fonte de 250 W não é recomendável. Basta somar as taxas de consumo desses itens para notar:

Athlon 64 FX

100 W (valor estimado)

HD (cada)

25 W + 25 W (valor estimado)

Drive de CD/DVD

25 W (valor estimado)

Placa de vídeo 3D

80 W (valor estimado)

Mouse óptico + teclado

10 W (valor estimado)

Total

265 W *




Continue reading...

MICROCOMPONENTES SMD

Microcomponentes SMD Na tecnologia de montagem de componentes eletrônicos convencionais (Trhouhg Hole) os componentes possuem terminais (leads) os quais são montados manual ou automaticamente em furos feitos no circuito impresso e soldados pelo outro lado sobre uma película de cobre (pads). Os componentes de montagem de superfície (SMD) dispensam a necessidade de furação do circuito impresso (o que diminui relativamente o tempo de fabricação da mesma) e são montados em cima da superfície da placa sobre os PAD's nos quais já tem uma pasta de solda já previamente depositada ou em cima de uma cola a qual é depositada na placa para aderir no meio do componente (fora da área dos PAD's). Para o uso de pasta de solda, monta-se o componente diretamente em cima desta pasta (já previamente depositada) e solda-se o mesmo por um processo de refusão (reflow) o que nada mais é do que derreter a liga chumbo/estanho da pasta de solda expondo a mesma a uma fonte de calor por irradiação (forno de infravermelho) No caso do uso da cola deve-se "curar" a mesma por um processo de aquecimento controlado após ter montado o componente na placa. Após esta cura, a placa de circuito impresso com os componentes montados pode passar por uma máquina de soldagem por onda sem que os componentes sejam danificados ou caiam (durante este processo de soldagem). Glue dot (cola) Para o lado inferior da placa o componente SMD pode ser segurado por um pingo de cola (apropriada para este fim) e não cairá no cadinho ou forno de onda. A cola pode ser aplicada por estêncil (tela de aço furada) com um rodo apropriado ou por uma máquina com bico tipo seringa que deposita a quantidade de cola desejada individualmente para cada componente. Os componentes SMD são soldados juntos com os componentes convencionais. Past sold (solda em pasta) Para o lado superior existe uma cola especial misturada com microesferas de estanho (solda) com aparência de pasta a qual, deve ser mantida sob refrigeração. A mesma é aplicada na placa por meio de estêncil ou bico aplicador. Logo após a aplicação da cola ou da solda os componentes são colocados na posição por uma máquina chamada Pick in Place (a solda tem como função também fixar o componente no lugar durante o processo de soldagem). Por meio de um forno especial com esteira e zonas de temperatura controladas a cola é curada ou a solda é fundida corretamente. A pasta de solda somente pode ser utilizada dentro de uma sala climatizada (temperatura e umidade). Mas porém entranto somente.... esta solda em pasta também pode ser derretida por um ferro de solda tipo soprador térmico que é o utilizado em estações de retrabalho para SMD. Os componentes SMD são fabricados em inúmeros tipos de invólucros e nos mais variados tipos de componentes, tais como: resistores, capacitores, semicondutores, circuitos integrados, relês, bobinas, ptc's, varistores, tranformadores, etc.

Continue reading...

DESSOLDAR COM FERRAMENTA ESPECIAL

VER VIDEO
video
Continue reading...

VERIFICAÇÃO DA PLACA

Considerações iniciais sobre manutenção em placa-mãe


Foi desenvolvida uma técnica que pode ser usada pelos técnicos que será obtido bons resultados, mesmo sem uso de schematics. Caso possuir esquemas, siga o roteiro dos circuitos apresentados nos schematics. Esta é ainda a melhor técnica eletrônica que existe. Lembre-se que uma placa se conserta no esquema e não fazendo testes na placa.
Mas como esquemas é um produto em extinção, vamos aos testes iniciais que se destinam a verificar principalmente o tipo de defeito e às vezes consertar, se possível for. Isto porque, dependendo do defeito torna-se impossível o conserto, principalmente em chipsets. Primeiros testes Antes de qualquer teste, é necessário executar duas ações: Observar algum sinal fora do normal, que pode ser um som, uma mensagem na tela. Observar visualmente a placa de sistema. Faça uma observação apurada na placa para encontrar algum defeito físico, como trilha quebrada, solda fria, sujeira, etc. A pesquisa por defeitos em uma placa de CPU envolve testes com o menor número possível de componentes. Primeiro ligamos a placa de CPU na fonte, no botão Reset e no alto falante. Instalamos também memória RAM, mesmo que em pequena quantidade. O PC deverá funcionar, emitindo beeps pelo alto falante. A partir daí, começamos a adicionar outros componentes, como teclado, placa de vídeo, e assim por diante, até descobrir onde ocorre o defeito. Nessas condições, o defeito provavelmente não está na placa de CPU, e sim em outro componente defeituoso ou então causando conflito. Os piores casos são aqueles em que a placa de CPU fica completamente inativa, sem contar memória, sem apresentar imagens no vídeo e sem emitir beeps. O problema pode ser muito sério. Confira os jumpers - Todos os jumpers da placa de CPU devem ser checados. Erros na programação dos clocks e tensões do processador impedirão o seu funcionamento. Também é preciso checar se existe algum jumper relacionado com as memórias. Algumas placas possuem jumpers para selecionar entre memória de 5 volts e memória de 3,3 volts. Os módulos FPM e EDO operam com 5 volts, já os módulos SDRAM operam em geral com 3,3 volts, mas existem modelos de 5 volts.. As placas de CPU possuem ainda um jumper relacionado com o envio de corrente da bateria para o CMOS. Se este jumper estiver configurado de forma errada, a placa de CPU poderá ficar inativa. Verifique portanto como este jumper está programado.

Sinais Básicos Quando uma placa de sistema ou motherboard falha, três sinais básicos devem ser analisados inicialmente (o que é, aliás, válido para outros equipamentos): • Alimentação • Clock • Reset Se algum destes três sinais estiverem incorretos, nada funcionará. Assim são sempre os primeiros sinais a inspeciona. Depois de analisados estes sinais, podem ser usadas outras técnicas de manutenção, incluindo as técnicas de software, se possível, serem realizadas.. Teste de Alimentação Neste ponto, o técnico deve ter certeza que a fonte de alimentação, está ok e a placa está com falhas. Quando ocorrer curto em alguma placa ou periférico conectado, a fonte pode apresentar um defeito fictício e induzir a erro. Se for medida a tensão por um dos seus conectores, o valor será nulo. Isto porque o curto paralisa o fornecimento de tensão à placa de sistema e periféricos. Para obter resultados, é necessário a seguinte operação quantas vezes for necessária: 1) desligar o micro e desconectar aplaca de sistema da fonte, em seguida, ligar o micro e medir as tensões. Se estiverem corretas, a placa de sistema poderá estar em curto, contudo verifique também as placas interfaces e os periféricos conectados exatamente a elas, como teclado, mouse. Desligar o micro e desconectar o disco rígido da fonte, em seguida, ligar micro e medir as tensões. Se estiverem corretas, o disco está em curto; Repetir esta operação com outros periféricos, um de cada vez. Coloque a ponta de teste de cor preta no terra de um conector de periféricos e com a ponta vermelha, teste estes pontos: Slot ISA B1= GND B3 = +5V B7= - 12V B9 = +12V Slots PCI B3=GND B62= +5V (último pino) B1= -12V A2=+12V Atualmente, as placas de sistema são fornecidas com chipsets VLSI e soldados em SMT que não devem ser testados para alimentação. Se os valores colhidos estiverem ok, vá para o próximo item senão é necessário alguns testes complementares, sendo o primeiro verificar o valor incorreto obtido, ou seja, +12 e +5, etc. e a forma apresentada que pode ser: - Fora da faixa aceitável de tensão (normalmente até + ou – 10%). Neste caso, é necessário verificar o valor de entrada. Se o valor de entrada estiver correto, isto é um indicativo de degradação do sinal no circuito, pois no circuito de alimentação da placa mãe existem diversos capacitores, resistores e transistores que alterados em seu funcionamento irão impedir a obtenção de valores corretos na medição. Para referência a figura abaixo mostra as tensões fornecidas pelo conector da fonte AT também pelo conector da fonte ATX e sem valor, comece verificando o valor na entrada, se presente, o problema deve ser de trilha quebrada ou componente desconectado (examine bem as soldas e faça o teste de continuidade, se necessário). em curto, se o valor obtido for nulo ou muito baixo, então pode existir um curto na placa. Neste caso, o melhor método é usar o multímetro em escala de resistência, que determinará rapidamente o local do curto,. Capacitor danificado - A placa de CPU pode estar com algum capacitor eletrolítico danificado Infelizmente os capacitores podem ficar deteriorados depois de alguns anos. O objetivo dos capacitores é armazenar cargas elétricas. Quando a tensão da fonte sofre flutuações, os capacitores evitam quedas de voltagens nos chips, fornecendo-lhes corrente durante uma fração de segundo, o suficiente para que a flutuação na fonte termine. Normalmente existe um capacitor ao lado de cada chip, e os chips que consomem mais corrente são acompanhados de capacitores de maior tamanho, que são os eletrolíticos. Com o passar dos anos, esses capacitores podem apresentar defeitos, principalmente assumindo um comportamento de resistor, passando a consumir corrente contínua. Desta forma, deixam de cumprir o seu papel principal, que é fornecer corrente aos chips durante as flutuações de tensão. Toque cada um dos capacitores e sinta a sua temperatura. Se um deles estiver mais quente que os demais, provavelmente está defeituoso. Faça a sua substituição por outro equivalente ou com maior valor. Note que um capacitor eletrolítico possui três indicações: tensão, capacitância e temperatura. Nunca troque um capacitor por outro com parâmetros menores. Você sempre poderá utilizar outro de valores iguais ou maiores. Por exemplo, um capacitor de 470 uF, 10 volts e 105°C pode ser trocado por outro de 470uF, 12 volts e 105°C, mas nunca por um de 1000 uF, 12 volts e 70°C (apesar de maior capacitância e maior tensão, a temperatura máxima suportada é inferior). Algumas vezes, o problema apresentado por estes capacitores são visuais (fica estufado) facilitando assim o diagnóstico imediato.

Continue reading...
 

AUXÍLIO NA MANUTENCAO DE PLACA MAE Copyright © 2009 Not Magazine 4 Column is Designed by Ipietoon Sponsored by Dezigntuts